
Deep Learning
00 Introduction and Course logistics

Dr. Konda Reddy Mopuri
Dept. of AI, IIT Hyderabad

Jan-May 2024

Dr. Konda Reddy Mopuri dl-00/Introduction 1

https://krmopuri.github.io/


Time slot

B slot

Monday 10 - 10:55 AM
Wednesday 9 - 9:55 AM
Thursday 11 - 11:55 AM
ALH-1
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Logistics

Course website: https://krmopuri.github.io/dl24/
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Evaluation

Programming Assignments - 40% (best 4 of 5; 1 for each of the first
5 segments)
Project - 20%
Viva - 20%
Written exams (best 4 of 5 surprise tests) - 20%
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TAs

Susmit Agrawal (ai22mtech12002@iith.ac.in )
Rupa Kumari (ai22mtech11002@iith.ac.in)
Deepika Vemuri (ai22resch11001@iith.ac.in)
Savarana Datta Reddy (ai20btech11008@iith.ac.in)
Some more coming up!
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Contents

Broadly: Building blocks of the Deep Learning based solutions

Artificial Neuron → Generative AI
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Prerequisites

Programming in Python (Primer on PyTorch on 13 January, 10 AM -
1 PM in ALH-1)

A course on Machine Learning
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Why Deep Learning?

Deep Learning drives the recent AI boom.
Image Source: Artificial Intelligence Magazine
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Textbooks and References

Lot of online resources
Michael Nielsen’s text book on NN & DL
NPTEL course on Deep Learning by Prof. Mitesh Khapra, IITM
DL course by François Fleuret, Uni. of Geneva
Deep Learning textbook by Ian Goodfellow et al.
PyTorch - https://pytorch.org/
Many more that I could not list and am not aware of...
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What is DL?
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What is DL?

Subset of ML that is essentially Artificial Neural Networks with more layers
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What is DL?

Crude attempt to imitate the human brain in learning
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Classical ML vs. DL

Classical ML: Handcrafted features + learnable model
Need strong domain expertise
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Classical ML vs. DL

Deep Learning: Deep stack of parameterized processing
End-to-End learning
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Classical ML vs. DL

ANNs predate some of the classical ML techniques

We are now dealing with a new generation ANNs
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The Biological Neuron

About 100 billion neurons in human brain

Figure credits: Wikipedia
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https://en.wikipedia.org/wiki/Neuron


History of Neural Networks

1 McCulloch Pitts neuron (1943) - Threshold Logic Unit

2 Donald Hebb (1949) - Hebbian Learning Principle
3 Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40

neurons)
4 Frank Rosenblatt (1958) - created perceptron to classify 20X20

images
5 David H Hubel and Torsten Wiesel (1959) demonstrated orientation

selectivity and columnar organization in cats visual cortex
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https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/
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Backpropagation

Paul Werbos (1982) is credited for back-propagation in ANNs

Precursors of BP were known as early as 1960s (reference)
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History (contd.)
1 Neocognitron by Fukushima (1980)

2 Implements the Hubel and Wiesel’s principles
3 Used for hand-written digit recognition
4 Viewed as precursor for the modern CNNs
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History (contd.)

1 Rumelhart (1986) trained with backprop

2 Showed that hidden units learn meaningful representations
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History (contd.)

1 LeNet family (Lecun et al. 1989) is a “convent”

2 Very similar to modern architectures
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History (contd.)

1 AlexNet (2012)

2 Network similar to LeNet-5, but of far greater size
3 Implemented using GPUs
4 Could beat the SoTA image classification methods by a large margin
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History (contd.)

1 AlexNet initiated a trend of more complex and bigger architectures

2 GoogLeNet (2015) contains “inception” modules
3 ResNet (2015) introduced “skip connections” that facilitate training

deeper architectures
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History (contd.)
1 Transformers (2017) are attention-based architectures

2 Very popular in NLP, and CV
3 Some of these models are extremely large (e.g., GPT-3 has 175B,

PaLM has 540B parameters, etc.)

Figure credits: Vaswani et al., 2017
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Deep Learning

1 Natural generalization to ANNs - Doesn’t differ much from the 90s
NNs

2 Computational graph of tensor operations that take advantage of
Chain rule (back-propagation)
SGD
GPUs
Huge datasets
Convolutions, attention, self-attention, etc.
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ILSVRC Error

Figure credits: Gershgorn, 2017
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LLM performance on the MMLU benchmark

Figure credits: W. Zi, L. El Asri, S. Prince
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What makes it work now?
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What makes it work now?

1 Huge research and progress in ML

2 Hardware developments - CPUs/GPUs/Storage technologies
3 Piles of data over the Internet
4 Collaborative development (open source tools and fora for

sharing/discussions, etc.)
5 Collective efforts from large institutions/corporations
6 . . .
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Deep Learning - practical perspective

1 Doesnt require a deep mathematical grasp

2 Makes the design of large models a system/software development task
3 Leverages modern hardware
4 Doesnt seem to plateau with more data
5 Makes the trained models a commodity
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Compute getting cheaper

Figure Credits: Wikipedia
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Storage getting cheaper

Figure Credits: John C Mccallum
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AlexNet to AlphaGo: 300000X increase in
compute

Figure Credits: Radford, 2018. 1 petaflop/s-day ≈ 100 GTX 1080 GPUs for a day,
≈ 500kwh
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LLM compute

Figure Credits: NVIDIA blog
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Datasets

Figure Credits: François Fleuret
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Datasets

GPT-3 uses 45TB of text data for training
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Implementation

Figure Credits: François Fleuret
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References

Please visit lectures tab in the course website for the full list of
references
Please share your comments/suggestions/any errors (technical or
references) with the instructor (krmopuri@ai.iith.ac.in)
Thank You!
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